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Computation of Characteristic Impedance for Multiple

Microstrip Transmission Lines Using a Vector Finite

Element Method
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Abstract–The total characteristic impedance is computed

from the field solution generated by a vector magnetic field fi-

nite element method for several microstrip geometries. By
making use of the power orthogonality of the modes, charac-

teristic impedances are computed. Additionally, the existence
of negative modal characteristic impedances is verified for cer-

tain multiconductor striplines. Circuit parameters which are
generated using this new method are verified by results from

the spectral domain technique.

I. INTRODUCTION

RECENTLY, the finite element method (FEM) has be-

come popular in the solution of Maxwell’s Equations

for microstrip [1]-[6]. However, the FEM generates field

solutions which are not useful for the circuit designer, If

a particular microstrip geometry is solved using a FEM

code, the field quantities and dispersion information must

be further processed to generate the characteristic imped-

ance. This processing, as will be shown, involves com-

putation of modal powers and strip currents, along with

some basic matrix manipulations.

The FEM used here is based on a two dimensional po-

tential energy formulation in terms of the magnetic field

vector H [7]. Additionally, the energy functional contains

a penalty function parameter which shifts low order spu-

rious modes out of the propagation diagram [8]. Second

order Lagrange interpolation polynomials are used over

six node triangular elements. When a perfect electric con-

ducting (pee) knife edge is encountered in the solution

domain, singular edge functions are incorporated in the

set of interpolating polynomials in order to hasten con-

vergence [4], [5]. After the assembly of the triangle ele-

ments, a matrix eigenvalue problem is constructed and

solved by using a sparse block iteration method for the

first few eigenmodes [9]. The modal solution k in terms

of the frequency of operation (k. ) and the three compo-

nents of the magnetic field intensity at the triangle nodes.

From the H-field and the corresponding dispersion infor-
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mation, the three components of the electric field and the

Poynting vector can be computed.

The advantage of using a finite element approach (based

on a differential equation formulation) to produce circuit

parameters lies in the fact that the solution technique is

very general. A field solution is possible for virtually any

waveguide regardless of the cross-sectional geometry, in-

cluding transmission lines which support transverse elec-

tromagnetic (TEM), quasi-TEM and non-TEM waves.

(Characteristic impedance can be uniquely defined for

pure TEM waves only. ) However, when the transmission

line of interest supports a zero cutoff frequency quasi-

TEM mode, as in the case of microstrip, a suitable char-

acteristic impedance can still be defined, The problem

with microstrip is that over the frequency range of inter-

est, the definition of characteristics impedance can be-

come ambiguous since the quasi-TEM mode becomes less

like an ideal TEM mode as frequency grows large. The

several possible definitions of characteristic impedance

will each give different values.

If circuit parameters like characteristic impedance are

to be produced, then it is necessary to find the modal strip

currents and powers for all quasi-TEM characteristic so-

lutions which a structure supports. By integrating the tan-

gential magnetic field on the surface of the strips, longi-

tudinal and transverse strip currents can be found. With

reference to Fig. 1, by integrating the z-component (lon-

gitudinal component) of the Poynting vector over the

waveguide cross-section, the total propagating power can

be computed.

For this work, the TEM power-current orthogonality

definition of characteristic impedance proposed by

Weimer and Jansen [10] is employed for N conductor lines

supporting N – 1 quasi-TEM modes. This is done be-
cause currents and powers are more easily found (com-

putationally speaking) than voltages from the FEM solu-

tion.

The novelty of this work lies in the use of a general two

dimensional finite element field analysis package (which

models any waveguide geometry which is longitudinally

invariant) to generate currents, voltages and powers and

thereby compute normalized circuit quantities like char-

acteristic impedance and velocity factors. Specialized
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conductor \
dielectric

Fig. 1. Illustration of a general multiconductor transmission line with in-
homogeneous dielectrics. A contour C,,, is illustrated as an example line

integral path for the evaluation Ampere’s li]w.

methods of analysis like the spectral domain technique

[11] require a priori information on the geometry of the

problem to be programmed into the code, i.e., the Green’s

function for microstrip. On the other hand, the FEM re-

quires no previous assumptions on the problem geometry

other than the assumption that the problem domain must

be finite in extent (usually enclosed by a perfect electric

wall). Even though this paper focuses on the multiple mi-

crostrip problem, many other geometries can be charac-

terized in terms of lumped circuit parameters using the

approach developed here.

II. FORMULAI’ION

Characteristic Impedance: There are two types of

characteristic impedance which will be computed here.

The first (and perhaps the most useful) definition of char-

acteristic impedance is 2., the total characteristic imped-

ance. This quantity takes the form of an (N – 1) x (N –

1) matrix for an N conductor transmission line. In the case

of shielded microsttip structure, there would be N – 1

strips and one shield. The matrix elements Z.ti relate the

voltage on strip i to the current strip j. The second defini-

tion of characteristic impedance which is computed here

is the modal impedance, Zm. The elements of this matrix

relate the voltage to the current on a given line for each

of the quasi-TEM modes that exist.

It is known that an N conductor structure will support

N – 1 orthogonal quasi-TEM modes (i.e., the field ei-

genfunctions are orthogonal). Following Marx [12], Wei-

mer and Jansen [10], it can be inferred that given the com-

plete sets of current eigenvectors 1 and voltage

eigenvectors V derived from the orthogonal field wave-

functions will satisfy,

ITV = p (1)

where P is diagonal and element P ~ is the propagating

power for mode k and [”] T represents the transpose of a

matrix. Expression (1) is the heart of the characteristic

impedance computation. Using Ohm’s Law, it can be

shown that

ITZCI = P (2)

where Zc is the total characteristic impedance matrix. By

performing some matrix inversions and multiplications,

2. can be explicitly calculated from the modal powers and

the eigencurrents. It is interesting to note that the char-

acteristics impedance m,atrix is nothing but the diagonal

modal power matrix that has undergone a change of basis

via the symmetric similarity transformation

26 = [Z-l] TPZ-l. (3)

Since P is real, positive and diagonal and Z is real, the

total characteristic impedance matrix must be symmetric

and real. The symmetry of Zc is indicative of the recip-

rocal nature of the transmission lines examined here and

the fact that Zc is real is a consequence of the lossless

approach to the analysis taken here.

After computing the total characteristic impedance, the

modal characteristic impedance matrix, Zm, can be easily

produced. The modal characteristic impedance, as de-

fined in [11] -[13] is

(4)
l~k

The matrix element Zmi~ in (4) corresponds to the ratio of

the voltage and the current on line i for mode k. This def-

inition of characteristic impedance could be useful for

studying the nature of mode propagation on multiconduc-

tor TEM and quasi-TEM transmission lines.

It is worthwhile to illustrate why some of the other

methods for finding Zc are not used. Two methods which

have enjoyed widespread use for many years are the volt-

age-current formulation and the partial power method

[13]. Both of these methods are just as valid as the power-

currenf method for TEM lines. However, in the case of

inhomogeneous dielectrics which no longer support TEM

modes, there is no unique value that can be found for volt-

age and current. However, if a convenient integration path

could be found where the fields look almost like TEM

fields, reasonable approximations could be made for the

current and voltage. For evaluating the current, integra-

tion contours are taken around the surface of the conduc-

tors. At lower frequencies, the quasi-TEM modes are pri-

marily TMZ (of which the TEMZ modes are a subset). Near

the conductors, therefore, the current integral around the

conductors should yield fairly unique values for current.

As frequency increases, however, the quasi-TEM modes

will become more TEZ and the current definition becomes

more ambiguous. That is to say, the longitudinal mag-

netic field intensity (or transverse current density) be-

comes significant and Ampere’s law does not provide a

unique value for the current.
Perhaps the largest inconvenience in the V-I method is

the necessity of computing a voltage integral. Unlike the

current integral, no convenient path of integration exists

for the voltage. Only in zero-frequency cases does the

voltage integral produce a valve value independent of
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path. The voltage integral is more path sensitive than the

current integral for nonzero frequency (as is evident when

one considers the difference in electric field strength in a

microstrip substrate and out of the substrate). For this rea-

son, the V-I method of finding characteristic impedance

is not used.

The partial power technique for the determination of

modal impedance is not used here for a couple of reasons.

One reason is that the computation of the required integral

is inconvenient due to the nature of the finite element field

solution technique, The partial power technique requires

the evaluation of

![
Ek X Hik “ dS

zm~~ =
.l~i~

) (5)

where Ek is the modal electric field profile and Hik IS the

magnetic field for mode k due to the current on line i. ZmiA

in (5) represents one definition of the modal impedance

based on (4), The inconvenience is that it is much too

difficult to solve for the individual contributions of the

line currents to the magnetic field using the FEM. The

partial power technique is most often used with the spec-

tral domain (integral equation) technique, where partial

modal powers are easily obtained by inserting the line

currents one by one into Green’s function equation and

computing the magnetic field for the single line. In the

spectral domain technique, the fields are found from the

currents, On the other hand, in the FEM the currents are

found from the fields. This makes the computation of any

type of’ ‘partial field” from a single strip current difficult,

Consequently, a unified method of computing all char-

acteristic impedance matrix elements directly from the

field-derived quantities (mode powers and current eigen-

vectors) is needed. Additionally, the partial power method

does not implicitly enforce the orthogonality of the eigen-

currents and eigenvoltages which exists for TEM modes,

and is enforced for the quasi-TEM modes in (1).

Power and Current Computation from the Fields: The

numerical implementation of the characteristic impedance

algorithm involves converting the FEM field solution into

powers and currents. The goal is to compute the currents

on all N – 1 microstrips for all of the N – 1 quasi-TEM

modes. Using Ampere’s Law, the longitudinal conductor

currents in the general multiconductor transmission line

structure of Fig. 1 are found by

+
Hk “ dl = Ic,~, (6)

c,

where the contour CCis taken to be a path just outside (by

some infinitesimal distance) the ith current carrying con-

ductor. In (6), Hk is the total magnetic field intensity for

mode k and lZ~~is the longitudinal current on strip i for

mode k. This integral is evaluated using the same Lagran-

gian and singular edge interpolation functions which are
used to construct the functional equation in the FEM. The

integrals of the FEM shape functions can be evaluated

analytically in terms of the contour lengths and the nodal

values for the transverse magnetic field. For the second

order Lagrange polynomials, an exact analytic solution

for the integrals reduce to Simpson’s Rule. The integrals

of the edge functions are also analytically expressed. Since

the transverse field near an edge varies as r(~/a) – 1,

where r is the distance from the edge and a is the span

angle of the edge [14], it can be seen that this integral in

terms of r is easily evaluated. The edge functions are nec-

essary only inside of the elements which share a node on

a metal knife edge. All that is needed is the length of the

line segment over which the integral is defined and the

coefficient of the edge function (which is provided by the

FEM eigensystem solution).

The interior region microstrip conductors are assumed

to be polygonal perfect electric conducting (pee) bound-

aries with two or more convex edge nodes. The edge

nodes correspond to the vertices of the polygon. The no-

dal transverse magnetic field values are inserted into the

analytical expression for the line integral along the line

segment which defines each side of the polygon. This type

of formulation allows faster computation of the eigencur-

rent matrix for multiple conductor problems than a brute

force numerical integration of the field eigenfunction

along the outside of the strips.

The propagating power for all the modes of interest fol-

lowing from the integration of the Poynting vector, which

from modal orthogonality gives

(7)

a

[n (7), u is the cross-section of the entire structure, j and

k are the mode numbers, Ej and Hk are the modal electric

and magnetic field vectors for the jth and kth modes, re-

spectively, pk is the longitudinally propagating power for

the kth mode, and the ~jk is the Kronecker delta function.

The same shape functions are used in the power com-

putation as in the construction of the FEM global matrix

equations. This proved to be the best method for evalu-

ating the power integrals, since the universal matrix tech-

nique described by Silvester [15] could be used for the

Lagrange function integration. The edge functions are in-

tegrated by using the Gauss –Legendre method. The need

for two types of integration increased the complexity of

the code but was necessa~ to maintain accuracy.
Since the FEM formulation is based on a solution for

the magnetic field, (7) must be put into a form based on

the magnetic field vector. Using Maxwell’s equations, the

modal power can be written as

1
Pe~=– —

!!
Hk X [e,]-’ V X H? “ dS. (8)

jweo
u?

where Pck is the contribution to the propagating power

from element e for mode k, o, represents the surface of

element e, and dS is the differential surface element ori-

ented with its normal in the longitudinal (propagation) di-
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rection. Given (8), the total propagating power can now

be expressed as the sum of all the elemental ccmtributions,

so

E

P~ = ,~1 IPek (9)

represents the total propagating power in the transmission

line for E mesh elements in the discretized solution do-

main.

In terms of the software implementation of (8) and (9),

the most difficult aspect is the actual computation of (8).

There are two types of basis functions used in the REM

code, Lagrange polynomials and edge functions. Since the

elements which do not lie on a sharp convex pec edge use

Lagrange functions and the elements which lie on edges

use both Lagrange functions and edge functions, a for-

midable bookkeeping job results.

In general, the magnetic field is determined by

6

Hek = ~~, ‘[Hi] ek~i(X, y) + Ce~(X, ,Y)} (lo)

where [Hi ]~~ is the nodal magnetic field intensities for ele-

ment e and mode k, CC~is the edge coefficient for element

e and mode k (if there is no edge element e, then c~k is

zero), and Ni (x, y) and g(x, y) are the Lagrange and edge

basis functions, respectively. In the case where there is

no edge function present in (10), (8) is evaluated by using

the previously mentioned universal matrix technique. If

c.k is nonzero, then a numerical solution of’ (8) by the

Gauss-Legendre method is necessary to find the contri-

bution from the edge function. This adds extra overhead

to the computation time, but the gain in accuracy by in-

cluding edge function contributions overshadows the in-

crease in program complexity.

III. EXAMPLE CALCULATIONS

In order to validate the preceding methodology, several

example calculations using three lmicrostrip geometries are

\ presented. The simplest example is a single microstt-ip line

which is 1.0 mm wide on a 1.0 mm thick substrate with

~, = 10.0, as shown in Fig. 2. This configuration is known

to have a characteristic impedance of about 50 !2 at low

frequencies. The velocity factor ~ /kO is found to be 2.59

using a TEM approximation given by Bhartia and Bahl

[16]. It is expected that the transmission line circuit pa-

rameters (~/k. and ZC) will be slowly varying functions

with respect to frequency. Note that according to the def-

initions of total characteristic impedance and modal char-

acteristic impedance, Z. = Z~, since there is only one

strip and, therefore, only one quasi-TEM mode. Figs. 3

and 4 show the velocity factor and characteristic imped-

ance curves, respectively, for th~e single strip geometry.
Domain method produced results, shown on these curves,

verify the trend of the solutions produced by the FEM

even though the points do not match exactly. The differ-

ences between the two methods can be explained by con-

sidering the different convergence properties of the two

,pec enclosure
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Fig. 2. Single strip geometry discussed in the text with a = 10.0 mm,

b =5. Omm, Jr = l. Omm, w = l. Ommand e,= 10.0.
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Fig. 5. Dual symmetric single plane microstrip geometry witha = 10.0

mm, b = 5.0 mm, h = 1.0 mm, w = 2.0 mm, s = 1.0 mm and

e = 4.0.

methods. For example, the FEM will begin to exhibit er-

rors in the eigensystem solution as the frequency goes to

zero due to the increasing condition number of the global

matrices and the limitations of the interpolation. For the

single strip example, the solution domain is discretized
into 720 triangles, which corresponds to about 4500 un-

knowns in the matrix eigenvalue problem. The mesh is

almost uniform over the waveguide cross-section, with the

smallest elements being under the microstrip. The ratio of

areas between the largest and smallest element is not

greater than 4. The solution of this problem takes about

25 min on an Ardent Titan P-3 super-minicomputer, with

about eight megabytes of core storage being required. As

in all the examples which are presented here, the bulk of

the computing time is utilized by the eigensystem solver.

The matrix assembly and 110 operations are very fast by

comparison.

The eigensystem solver based on the subspace iteration

method [9] is worthy of note here. This method allows for

the computation of a small number of the extreme eigen-

states of a very large (orders greater than 10 000) matrix

eigenvalue problem. Since the FEM formulation here is

based on a differential equation based energy operator, the

matrices are sparse and the average bandwidth is small.

Sparsity occurs because the value of the functional at any

point depends only on the field intensities at the nearest

node points. For the problems solved in this paper, about

one percent of the matrix elements in the global finite ele-

ment matrices needed to be stored, or about 10b double

precision numbers in the single microstrip problem.

Fig. 5 shows a dual strip structure which is symmetric

about the center of the shield.’ The dimensions are: strip

width = 2.0 mm, substrate height = 1.0 mm, strip sep-

aration = 1.0 mm. The substrate dielectric constant is e,

= 4.0. These striplines are found to have self impedances

of about 50 fl (for large strip separation) and a velocity

factor of 1.76, using a TEM approximation [16]. The dis-

persion curves for the mode velocity factors, the total

characteristic impedance matrix Zc, and the modal char-
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Fig. 6. Dispersion curves for the even and odd modes of the dual sym-
metric single plane micro strip.
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Fig. 7. Dual strip total characteristic impedance curves

acteristic impedance matrix Zm are presented in Figs. 6–

8, respectively. Note that all components of modal char-

acteristic impedance are positive for this example. Again,

the spectral domain method is used to verify the results in

Figs. 6-8. It has been shown by Carin [11] that all modal

characteristic impedance matrix elements should be po-

sitive when symmetric single plane dual striplines are

considered. The discretization in this example used the

same number of elements over the solution domain as the

single strip example. Again, 720 triangular elements are

used in a fairly uniform mesh for the dual strip.

~The last structure presented is a dual layer, dual mi-

crostrip geometry designed to illustrate the existence of
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b

Fig. 9. Dual strip dual plane microstrip geometry is shown with a = 10.0

mm, b = 8.0 mm, h, = h2 = 1.0 mm, w, = W2 = 1.0 mm and

e, = 4.0 for both dielectric layers.

negative modal characteristic impedances. It is shown in

[11] that for a two strip geometry if

P,
— IZ121Z22< –1,111,2],
P~

(11)

then negative off-diagonal elements of the modal charac-

teristic impedance will occur [1 1]. It is worth reiterating

that the total characteristic impedance will always be po-

sitive, real and symmetric for lossless, reciprclcal passive

transmission lines (in order to satisfy the conservation of

energy law). The microstrip transmission line dimensions

are illustrated in Fig. 9 and are given as: strip widths =

1.0 mm, first layer thickness = 1.0 mm, and second layer

thickness = 1.0 mm. As in the previous examples, the

substrate dielectric constant is taken to be e, := 4.0. The

plots displayed in Figs. 10-12 show velocity factor, total

characteristic impedance and modal characteristic imped-

ance for the dual plane geometry. The values for Z~ I I,

Z~M and Z~la agree well with those generated by the spec-
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Fig. 10. Dispersion curves for the two microstrip modes of the structure

illustrated in Fig. 9.
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Fig. 11. Total characteristic impedance curves for the dual plane structure

illustrated in Fig. 9.

tral domain technique. (Spectral domain calculations per-

formed for an operating frequency of about 9 GHz ..) The

FEM is seen in Fig. 12 to yield a value of about –200 Q

for Z~z, while the spectral domain method gives a value

of – 750 !2. This is because the current on line two is very

small for mode 1. Small perturbations in the current so-

lution on line two will generate large errors in the modal

impedance.

The geometry is discretized into 1232 triangular ele-

ments, which presents a matrix eigenvalue equation of or-

der 7500 to the eigensystem solver. It takes about 50 min

of CPU time on the Stardent Model P3 computer to solve

for the fields in this structure. The required core storage

comes to about 18 Mbytes and as in the previous exam-
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pies most of the CPU time is devoted to solving the matrix

eigenvalue problem.

IV. CONCLUSION

A straight forward method has been found to solve for

interconnect circuit parameters using the results of a vec-

tor differential equation formulation with a finite element

solution. This work is unique in the sense that an FEM

field solution is used to compute circuit quantities for

quasi-TEM transmission lines. In general, this method can

solve problems with any number of conduction wires in-

side of an enclosing perfect electric boundary of any

shape. Inhomogeneous and anisotropic dielectric mate-

rials can also be conveniently handled using the FEM.

The modal and total characteristic impedance of a trans-

mission line are found by using elementary matrix trans-

formations on the current eigenvectors and the modal

powers. The current eigenvectors are computed from the

magnetic field eigenstate through the use of Ampere’s law

and the modal powers are found by integrating the Poynt-

ing vector over the cross-section of the shielded domain.

The linking of the FEM with a circuit CAD program such

as SPICE is now possible.
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