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Computation of Characteristic Impedance for Multiple
Microstrip Transmission Lines Using a Vector Finite
Element Method

G. William Slade and Kevin J. Webb, Member, IEEE

Abstract—The total characteristic impedance is computed
from the field solution generated by a vector magnetic field fi-
nite element method for several microstrip geometries. By
making use of the power orthogonality of the modes, charac-
teristic impedances are computed. Additionally, the existence
of negative modal characteristic impedances is verified for cer-
tain multiconductor striplines. Circuit parameters which are
generated using this new method are verified by results from
the spectral domain technique.

I. INTRODUCTION

ECENTLY, the finite element method (FEM) has be-

come popular in the solution of Maxwell’s Equations
for microstrip [1]-[6]. However, the FEM generates field
solutions which are not useful for the circuit designer. If
a particular microstrip geometry is solved using a FEM
code, the field quantities and dispersion information must
be further processed to generate the characteristic imped-
ance. This processing, as will be shown, involves com-
putation of modal powers and strip currents, along with
some basic matrix manipulations.

The FEM used here is based on a two dimensional po-
tential energy formulation in terms of the magnetic field
vector H [7]. Additionally, the energy functional contains
a penalty function parameter which shifts low order spu-
rious modes out of the propagation diagram {8]. Second
order Lagrange interpolation polynomials are used over
six node triangular elements. When a perfect electric con-
ducting (pec) knife edge is encountered in the solution
domain, singular edge functions are incorporated in the
set of interpolating polynomials in order to hasten con-
vergence [4], [5]. After the assembly of the triangle ele-
ments, a matrix eigenvalue problem is constructed and
solved by using a sparse block iteration method for the
first few eigenmodes [9]. The modal solution is in terms
of the frequency of operation (k,) and the three compo-
nents of the magnetic field intensity at the triangle nodes.
From the H-field and the corresponding dispersion infor-
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mation, the three components of the electric field and the
Poynting vector can be computed.

The advantage of using a finite element approach (based
on a differential equation formulation) to produce circuit
parameters lies in the fact that the solution technique is
very general. A field solution is possible for virtually any
waveguide regardless of the cross-sectional geometry, in-
cluding transmission lines which support transverse elec-
tromagnetic (TEM), quasi-TEM and non-TEM waves.
(Characteristic impedance can be uniquely defined for
pure TEM waves only.) However, when the transmission
line of interest supports a zero cutoff frequency quasi-
TEM mode, as in the case of microstrip, a suitable char-
acteristic impedance can still be defined. The problem
with microstrip is that over the frequency range of inter-
est, the definition of characteristics impedance can be-
come ambiguous since the quasi-TEM mode becomes less
like an ideal TEM mode as frequency grows large. The
several possible definitions of characteristic impedance
will each give different values.

If circuit parameters like characteristic impedance are
to be produced, then it is necessary to find the modal strip
currents and powers for all quasi-TEM characteristic so-
lutions which a structure supports. By integrating the tan-
gential magnetic ficld on the surface of the strips, longi-
tudinal and transverse strip currents can be found. With
reference to Fig. 1, by integrating the z-component (lon-
gitudinal component) of the Poynting vector over the
waveguide cross-section, the total propagating power can
be computed.

For this work, the TEM power-current orthogonality
definition of characteristic impedance proposed by
Weimer and Jansen [10] is employed for N conductor lines
supporting N — 1 quasi-TEM modes. This is done be-
cause currents and powers are more easily found (com-
putationally speaking) than voltages from the FEM solu-
tion.

The novelty of this work lies in the use of a general two
dimensional finite element field analysis package (which
models any waveguide geometry which is longitudinally
invariant) to generate currents, voltages and powers and
thereby compute normalized circuit quantities like char-
acteristic impedance and velocity factors. Specialized
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Fig. 1. Illustration of a general multiconductor transmission line with in-
homogeneous dielectrics. A contour C,, is illustrated as an example line
integral path for the evaluation Ampere’s law.

methods of analysis like the spectral domain technique
[11] require a priori information on the geometry of the
problem to be programmed into the code, i.e., the Green’s
function for microstrip. On the other hand, the FEM re-
quires no previous assumptions on the problem geometry
other than the assumption that the problem domain must
be finite in extent (usually enclosed by a perfect electric
wall). Even though this paper focuses on the multiple mi-

crostrip problem, many other geometries can be charac- -

terized in terms of lumped circuit parameters using the
approach developed here.

II. FORMULATION

Characteristic Impedance: There are two types of
characteristic impedance which will be computed here.
The first (and perhaps the most useful) definition of char-
acteristic impedance is Z,, the total characteristic imped-
ance. This quantity takes the form of an (N — 1) X (N —
1) matrix for an N conductor transmission line. In the case
of shielded microstrip structure, there would be N — 1
strips and one shield. The matrix elements Z; relate the
voltage on strip i to the current strip j. The second defini-
tion of characteristic impedance which is computed here
is the modal impedance, Z,,. The elements of this matrix

‘relate the voltage to the current on a given line for each
of the quasi-TEM modes that exist.

It is known that an N conductor structure will support
N — 1 orthogonal quasi-TEM modes (i.e., the field ei-
genfunctions are orthogonal). Following Marx [12], Wei-
mer and Jansen [10], it can be inferred that given the com-
plete sets of current eigenvectors I and voltage
eigenvectors V derived from the orthogonal field wave-
functions will satisfy,

rv=p

where P is diagonal and element Pf is the propagating
power for mode k and [-]” represents the transpose of a
matrix. Expression (1) is the heart of the characteristic
impedance computation. Using Ohm’s Law, it can be

a
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shown that

I"Z1=P ()

where Z_ is the total characteristic impedance matrix. By
performing some matrix inversions and multiplications,
Z, can be explicitly calculated from the modal powers and
the eigencurrents. It is interesting to note that the char-
acteristics impedance matrix is nothing but the diagonal
modal power matrix that has undergone a change of basis
via the symmetric similarity transformation

Z, = [I"Ypr'. (3)

Since P is real, positive and diagonal and I is real, the
total characteristic impedance matrix must be symmetric
and real. The symmetry of Z, is indicative of the recip-
rocal nature of the transmission lines examined here and
the fact that Z, is real is a consecquence of the lossless
approach to the analysis taken here.

After computing the total characteristic impedance, the
modal characteristic impedance matrix, Z,,, can be easily
produced. The modal characteristic impedance, as de-
fined in [11]-[13] is ‘ '
Iy
The matrix element Z,; in (4) corresponds to the ratio of
the voltage and the current on line i for mode k. This def-
inition of characteristic impedance could be useful for
studying the nature of mode propagation on multiconduc-
tor TEM and quasi-TEM transmission lines.

It is worthwhile to illustrate why some of the other
methods for finding Z, are not used. Two methods which

Zmik = (4)

- have enjoyed widespread use for many years are the volt-

age-current formulation and the partial power method
[13]. Both of these methods are just as valid as the power-
current method for TEM lines. However, in the case of
inhomogeneous dielectrics which no longer support TEM
modes, there is no unique value that can be found for volt-
age and current. However, if a convenient integration path
could be found where the fields look almost like TEM
fields, reasonable approximations could be made for the
current and voltage. For evaluating the current, integra-
tion contours are taken around the surface of the conduc-
tors. At lower frequencies, the quasi-TEM modes are pri-
marily TM, (of which the TEM, modes are a subset). Near
the conductors, therefore, the current integral around the
conductors should yield fairly unique values for current.
As frequency increases, however, the quasi-TEM modes
will become more TE, and the current definition becomes
more ambiguous. That is to say, the longitudinal mag-
netic field intensity (or transverse current density) be-
comes significant and Ampere’s law does not provide a
unique value for the current.

Perhaps the largest inconvenience in the V-I method is
the necessity of computing a voltage integral. Unlike the
current integral, no convenient path of integration exists
for the voltage. Only in zero-frequency cases does the
voltage integral produce a valve value independent of
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path. The voltage integral is more path sensitive than the
current integral for nonzero frequency (as is evident when
one considers the difference in electric field strength in a
microstrip substrate and out of the substrate). For this rea-
son, the V-I method of finding characteristic impedance
is not used.

The partial power technique for the determination of
modal impedance is not used here for a couple of reasons.
One reason is that the computation of the required integral
is inconvenient due to the nature of the finite element field
solution technique. The partial power technique requires
the evaluation of

SSEkXHik‘dS

2 »
1 zik

Zmik = (5)
where E, is the modal electric field profile and Hy, 1s the
magnetic field for mode k due to the current on line i. Z,,;,
in (5) represents one definition of the modal impedance
based on (4). The inconvenience is that it is much too
difficult to solve for the individual contributions of the
line currents to the magnetic field using the FEM. The
partial power technique is most often used with the spec-
tral domain (integral equation) technique, where partial
modal powers are easily obtained by inserting the line
currents one by one into Green’s function equation and
computing the magnetic field for the single line. In the
spectral domain technique, the fields are found from the
currents. On the other hand, in the FEM the currents are
found from the fields. This makes the computation of any
type of ‘‘partial field’’ from a single strip current difficult.
Consequently, a unified method of computing all char-
acteristic impedance matrix elements directly from the
field-derived quantities (mode powers and current eigen-
vectors) is needed. Additionally, the partial power method
does not implicitly enforce the orthogonality of the eigen-
currents and eigenvoltages which exists for TEM modes,
and is enforced for the quasi-TEM modes in (1).

Power and Current Computation from the Fields: The
numerical implementation of the characteristic impedance
algorithm involves converting the FEM field solution into
powers and currents. The goal is to compute the currents
on all N — 1 microstrips for all of the N — 1 quasi-TEM
modes. Using Ampere’s Law, the longitudinal conductor
currents in the general multiconductor transmission line
structure of Fig. 1 are found by

Hk ndl = IZ!k’ (6)
G

where the contour C, is taken to be a path just outside (by
some infinitesimal distance) the ith current carrying con-
ductor. In (6), H; is the total magnetic field intensity for
mode k and 1, is the longitudinal current on strip i for
mode k. This integral is evaluated using the same Lagran-
gian and singular edge interpolation functions which are
used to construct the functional equation in the FEM. The
integrals of the FEM shape functions can be evaluated

analytically in terms of the contour lengths and the nodal
values for the transverse magnetic field. For the second
order Lagrange polynomials, an exact analytic solution
for the integrals reduce to Simpson’s Rule. The integrals
of the edge functions are also analytically expressed. Since
the transverse field near an edge varies as r(w/a) — 1,
where r is the distance from the edge and « is the span
angle of the edge [14], it can be seen that this integral in
terms of r is easily evaluated. The edge functions are nec-
essary only inside of the elements which share a node on
a metal knife edge. All that is needed is the length of the
line segment over which the integral is defined and the
coeflicient of the edge function (which is provided by the
FEM eigensystem solution).

The interior region microstrip conductors are assumed
to be polygonal perfect electric conducting (pec) bound-
aries with two or more convex edge nodes. The edge
nodes correspond to the vertices of the polygon. The no-
dal transverse magnetic field values are inserted into the
analytical expression for the line integral along the line
segment which defines each side of the polygon. This type
of formulation allows faster computation of the eigencur-
rent matrix for multiple conductor problems than a brute
force numerical integration of the field eigenfunction
along the outside of the strips.

The propagating power for all the modes of interest fol-
lowing from the integration of the Poynting vector, which
from modal orthogonality gives

[

In (7), o is the cross-section of the entire structure, j and
k are the mode numbers, E; and H; are the modal electric
and magnetic field vectors for the jth and kth modes, re-
spectively, P, is the longitudinally propagating power for
the kth mode, and the 6y is the Kronecker delta function.

The same shape functions are used in the power com-
putation as in the construction of the FEM global matrix
equations. This proved to be the best method for evalu-
afing the power integrals, since the universal matrix tech-
nique described by Silvester [15] could be used for the
Lagrange function integration. The edge functions are in-
tegrated by using the Gauss—Legendre method. The need
for two types of integration increased the complexity of
the code but was necessary to maintain accuracy.

Since the FEM formulation is based on a solution for
the magnetic field, (7) must be put into a form based on
the magnetic field vector. Using Maxwell’s equations, the
modal power can be written as

P, = _ b SSH" X [e,]17'V x Hf - dS. (8)

Jweg
oe
where P, is the contribution to the propagating power
from element e for mode k, o, represents the surface of
element e, and dS is the differential surface element ori-
ented with its normal in the longitudinal (propagation) di-
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rection. Given (8), the total propagating power can now
be expressed as the sum of all the elemental contributions,
s0

E
P, = 2 Py ©
e=1
represents the total propagating power in the transmission
line for E mesh elements in the discretized solution do-
main.

In terms of the software implementation of (8) and (9),
the most difficult aspect is the actual computation of (8).
There are two types of basis functions used in the FEM
code, Lagrange polynomials and edge functions. Since the
elements which do not lie on a sharp convex pec edge use
Lagrange functions and the elements which lie on edges
use both Lagrange functions and edge functions, a for-
midable bookkeeping job results. .

In general, the magnetic field is determined by

' 6
Hy = 2 [HilaNi(x, y) + Cag(x, ), (10)

where [H;],, is the nodal magnetic field intensities for ele-
ment e and mode &, C, is the edge coefficient for element
e and mode k (if there is no edge element e, then C,, is
zero), and N;(x, y) and g(x, y) are the Lagrange and edge
basis functions, respectively. In the case where there is
no edge function present in (10), (8) is evaluated by using
the previously mentioned universal matrix technique. If
C, is nonzero, then a numerical solution of (8) by the
Gauss-Legendre method is necessary to find the contri-
bution from the edge function. This adds extra overhead
to the computation time, but the gain in accuracy by in-
cluding edge function contributions overshadows the in-
crease in program complexity.

III. ExaMPLE CALCULATIONS

In order to validate the preceding methodology, several
example calculations using three microstrip geometries are
presented. The simplest example is a single microstrip line
which is 1.0 mm wide on a 1.0 mm thick substrate with
¢, = 10.0, as shown in Fig. 2. This configuration is known
to have a characteristic impedance of about 50 Q at low
frequencies. The velocity factor 8 /k is found to be 2.59
using a TEM approximation given by Bhartia and Bahl
[16]. 1t is expected that the transmission line circuit pa-
rameters (3 /ky and Z.) will be slowly varying functions
with respect to frequency. Note that according to the def-
initions of total characteristic impedance and modal char-
acteristic impedance, Z. = Z,, since there is only one
strip and, therefore, only one quasi-TEM mode. Figs. 3
and 4 show the velocity factor and characteristic imped-
ance curves, respectively, for the single strip geometry.
Domain method produced results, shown on these curves,
verify the trend of the solutions produced by the FEM
even though the points do not match exactly. The differ-
ences between the two methods can be explained by con-
sidering the different convergence properties of the two

pec anclosure

wall of
symmatry
(pme)

Fig. 2. Single strip geometry discussed in the text with ¢ = 10.0 mm,
b=50mm, 2 =10mm, w=1.0mmande = 10.0.
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Fig. 3. Dispersion relationship for the first two modes in the single mi-
crostrip problem. The solid line corresponds to the microstrip mode. The
triangles represent the spectral domain solution.
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Fig. 4. Characteristic impedance of the single strip is presented here. Tri-
angles represent the spectral domain solution.
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Fig. 5. Dual symmetric single plane microstrip geometry with a = 10.0
mm, b = 50 mm, h = 1.0 mm, w = 2.0 mm, s = 1.0 mm and
e =4.0.

methods. For example, the FEM will begin to exhibit er-
rors in the eigensystem solution as the frequency goes to
zero due to the increasing condition number of the global
matrices and the limitations of the interpolation. For the
single strip example, the solution domain is discretized
into 720 triangles, which corresponds to about 4500 un-
knowns in the matrix eigenvalue problem. The mesh is
almost uniform over the waveguide cross-section, with the
smallest elements being under the microstrip. The ratio of
areas between the largest and smallest element is not
greater than 4. The solution of this problem takes about
25 min on an Ardent Titan P-3 super-minicomputer, with
about eight megabytes of-core storage being required. As
in all the examples which are presented here, the bulk of
the computing time is utilized by the eigensystem solver.
The matrix assembly and I/O operations are very fast by
comparison.

The eigensystem solver based on the subspace iteration
method [9] is worthy of note here. This method allows for
the computation of a small number of the extreme eigen-
states of a very large (orders greater than 10 000) matrix
eigenvalue problem. Since the FEM formulation here is
based on a differential equation based energy operator, the
matrices are sparse and the average bandwidth is small.
Sparsity occurs because the value of the functional at any
point depends only on the field intensities at the nearest
node points. For the problems solved in this paper, about
one percent of the matrix elements in the global finite ele-
ment matrices needed to be stored, or about 10° double
precision numbers in the single microstrip problem.

Fig. 5 shows a dual strip structure which is symmetric
about the center of the shield. The dimensions are: strip
width = 2.0 mm, substrate height = 1.0 mm, strip sep-
aration = 1.0 mm. The substrate dielectric constant is e,
= 4.0. These striplines are found to have self impedances
of about 50 @ (for large strip separation) and a velocity
factor of 1.76, using a TEM approximation [16]. The dis-
persion curves for the mode velocity factors, the total
characteristic impedance matrix Z,, and the modal char-
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Fig. 6. Dispersion curves for the even and odd modes of the dual sym-
metric single plane microstrip.
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Fig. 7. Dual strip total characteristic impedance curves.

acteristic impedance matrix Z,, are presented in Figs. 6
8, respectively. Note that all components of modal char-
acteristic impedance are positive for this example. Again,
the spectral domain method is used to verify the results in
Figs. 6-8. It has been shown by Carin {11] that all modal
characteristic impedance matrix elements should be po-
sitive when symmetric single plane dual striplines are
considered. The discretization in this example used the
same number of elements over the solution domain as the
single strip example. Again, 720 triangular elements are
used in a fairly uniform mesh for the dual strip.

. The last structure presented is a dual layer, dual mi-
crostrip geometry. designed to illustrate the existence of
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Modal Impedance
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Fig. 8. Dual strip modal characteristic impedance curves.
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Fig. 9. Dual strip dual plane microstrip geometry is shown witha = 10.0
mm, b = 80 mm, o, = h, = 1.0 mm, w, = w, = 1.0 mm and
¢, = 4.0 for both dielectric layers.

negative modal characteristic impedances. It is shown in
[11] that for a two strip geometry if

P,
— Liply < —Lyly,

P, 639

then negative off-diagonal elements of the modal charac-
teristic impedance will occur [11]. It is worth reiterating
that the total characteristic impedance will always be po-
sitive, real and symmetric for lossless, reciprocal passive
transmission lines (in order to satisfy the conservation of
energy law). The microstrip transmission line dimensions
are illustrated in Fig. 9 and are given as: strip widths =
1.0 mm, first layer thickness = 1.0 mm, and second layer
thickness = 1.0 mm. As in the previous examples, the
substrate dielectric constant is taken to be ¢, = 4.0. The
plots displayed in Figs. 10-12 show velocity factor, total
characteristic impedance and modal characteristic imped-
ance for the dual plane geometry. The values for Z,,;,,
Z.05 and Z,,,, agree well with those generated by the spec-

Modal dispersion curves
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Fig. 10. Dispersion curves for the two microstrip modes of the structure
illustrated in Fig. 9.
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Fig. 11. Total characteristic impedance curves for the dual plane structure
illustrated in Fig. 9.

tral domain technique. (Spectral domain calculations per-
formed for an operating frequency of about 9 GHz.) The
FEM is seen in Fig. 12 to yield a value of about —200
for Z,,, while the spectral domain method gives a value
of =750 Q. This is because the current on line two is very
small for mode 1. Small perturbations in the current so-

. lution on line two will generate large errors in the modal

impedance. ,

The geometry is discretized into 1232 triangular ele-
ments, which presents a matrix eigenvalue equation of or-
der 7500 to the eigensystem solver. It takes-about 50 min
of CPU time on the Stardent Model P3 computer to solve
for the fields in this structure. The required core storage
comes to about 18 Mbytes and as in the previous exam-
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Fig. 12. Modal characteristic impedance curves for the dual plane struc
ture 1n F1g. 9. See text for discussion on the comparison with spectral lo-
main data.

ples most of the CPU time is devoted to solving the matrix
eigenvalue problem.

IV. CoNCLUSION

A straight forward method has been found to solve for
interconnect circuit parameters using the results of a vec-
tor differential equation formulation with a finite element
solution. This work is unique in the sense that an FEM
field solution is used to compute circuit quantities for
quasi-TEM transmission lines. In general, this method can
solve problems with any number of conduction wires in-
side of an enclosing perfect electric boundary of any
shape. Inhomogeneous and anisotropic dielectric mate-
rials can also be conveniently handled using the FEM.
The modal and total characteristic impedance of a trans-
mission line are found by using elementary matrix trans-
formations on the current eigenvectors and the modal
powers. The current eigenvectors are computed from the
magnetic field eigenstate through the use of Ampere’s law
and the modal powers are found by integrating the Poynt-
ing vector over the cross-section of the shielded domain.
The linking of the FEM with a circuit CAD program such
" as SPICE is now possible.
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